coursera machine-learning-ex3 课程作业记录
Multi-class Classification and Neural Networks
function [J, grad] = lrCostFunction(theta, X, y, lambda) %LRCOSTFUNCTION Compute cost and gradient for logistic regression with %regularization % J = LRCOSTFUNCTION(theta, X, y, lambda) computes the cost of using % theta as the parameter for regularized logistic regression and the % gradient of the cost w.r.t. to the parameters.% Initialize some useful values
m = length(y); % number of training examples% You need to return the following variables correctly
J = 0;
grad = zeros(size(theta));% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost of a particular choice of theta.
% You should set J to the cost.
% Compute the partial derivatives and set grad to the partial
% derivatives of the cost w.r.t. each parameter in theta
%
% Hint: The computation of the cost function and gradients can be
% efficiently vectorized. For example, consider the computation
%
% sigmoid(X * theta)
%
% Each row of the resulting matrix will contain the value of the
% prediction for that example. You can make use of this to vectorize
% the cost function and gradient computations.
%
% Hint: When computing the gradient of the regularized cost function,
% there’re many possible vectorized solutions, but one solution
% looks like:
% grad = (unregularized gradient for logistic regression)
% temp = theta;
% temp(1) = 0; % because we don’t add anything for j = 0
% grad = grad + YOUR_CODE_HERE (using the temp variable)
%hx=sigmoid(Xtheta);
J=1/m(-y’log(hx)-(1-y)’log(1-hx))+lambda/2/mtheta(2:end)’theta(2:end);
grad=1/mX’(hx-y)+lambda/mtheta;
grad(1)=grad(1)-lambda/mtheta(1);% =============================================================
grad = grad(:);
end
function [all_theta] = oneVsAll(X, y, num_labels, lambda)%ONEVSALL trains multiple logistic regression classifiers and returns all
%the classifiers in a matrix all_theta, where the i-th row of all_theta
%corresponds to the classifier for label i
% [all_theta] = ONEVSALL(X, y, num_labels, lambda) trains num_labels
% logistic regression classifiers and returns each of these classifiers
% in a matrix all_theta, where the i-th row of all_theta corresponds
% to the classifier for label i% Some useful variables
m = size(X, 1);
n = size(X, 2);% You need to return the following variables correctly
all_theta = zeros(num_labels, n + 1);% Add ones to the X data matrix
X = [ones(m, 1) X];% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the following code to train num_labels
% logistic regression classifiers with regularization
% parameter lambda.
%
% Hint: theta(:) will return a column vector.
%
% Hint: You can use y == c to obtain a vector of 1’s and 0’s that tell you
% whether the ground truth is true/false for this class.
%
% Note: For this assignment, we recommend using fmincg to optimize the cost
% function. It is okay to use a for-loop (for c = 1:num_labels) to
% loop over the different classes.
%
% fmincg works similarly to fminunc, but is more efficient when we
% are dealing with large number of parameters.
%
% Example Code for fmincg:
%
% % Set Initial theta
% initial_theta = zeros(n + 1, 1);
%
% % Set options for fminunc
% options = optimset(‘GradObj’, ‘on’, ‘MaxIter’, 50);
%
% % Run fmincg to obtain the optimal theta
% % This function will return theta and the cost
% [theta] = …
% fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), …
% initial_theta, options);
%for c=1:num_labels
initial_theta=zeros(n+1,1);
options=optimset(‘GradObj’,’on’,’MaxIter’,50);
[theta]=fmincg(@(t)lrCostFunction(t,X,(y==c),lambda),initial_theta,options);
all_theta(c,:)=theta’;
end% =========================================================================
end
function p = predictOneVsAll(all_theta, X) %PREDICT Predict the label for a trained one-vs-all classifier. The labels %are in the range 1..K, where K = size(all_theta, 1). % p = PREDICTONEVSALL(all_theta, X) will return a vector of predictions % for each example in the matrix X. Note that X contains the examples in % rows. all_theta is a matrix where the i-th row is a trained logistic % regression theta vector for the i-th class. You should set p to a vector % of values from 1..K (e.g., p = [1; 3; 1; 2] predicts classes 1, 3, 1, 2 % for 4 examples) m = size(X, 1); num_labels = size(all_theta, 1); % You need to return the following variables correctly p = zeros(size(X, 1), 1); % Add ones to the X data matrix X = [ones(m, 1) X]; % ====================== YOUR CODE HERE ====================== % Instructions: Complete the following code to make predictions using % your learned logistic regression parameters (one-vs-all). % You should set p to a vector of predictions (from 1 to % num_labels). % % Hint: This code can be done all vectorized using the max function. % In particular, the max function can also return the index of the % max element, for more information see 'help max'. If your examples % are in rows, then, you can use max(A, [], 2) to obtain the max % for each row. % [h,p]=max(X*all_theta',[],2); % ========================================================================= end
function p = predict(Theta1, Theta2, X) %PREDICT Predict the label of an input given a trained neural network % p = PREDICT(Theta1, Theta2, X) outputs the predicted label of X given the % trained weights of a neural network (Theta1, Theta2)% Useful values
m = size(X, 1);
num_labels = size(Theta2, 1);% You need to return the following variables correctly
p = zeros(size(X, 1), 1);% ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
% your learned neural network. You should set p to a
% vector containing labels between 1 to num_labels.
%
% Hint: The max function might come in useful. In particular, the max
% function can also return the index of the max element, for more
% information see ‘help max’. If your examples are in rows, then, you
% can use max(A, [], 2) to obtain the max for each row.
%a2=sigmoid(Theta1*[ones(1,m);X’]);
a3=sigmoid(Theta2*[ones(1,size(a2,2));a2]);
[hx,p]=max(a3,[],1);
p=p’;% =========================================================================
end